Nernst Branes in Gauged Supergravity

Gabriel Lopes Cardoso

with S. Barisch, M. Haack, N. Obers and S. Nampuri arXiv:1108.0296; work in progress

Iberian Strings 2012

Gabriel Lopes Cardoso (IST)

Nernst Branes

< ロ > < 同 > < 回 > < 回 >

Motivation

- Extremal black holes in string theory: asymptotically flat: detailed microscopic understanding available. Systems at *T* = 0 with *S* ≠ 0.
- What about black objects satisfying Nernst law?
 Systems at T = 0 with S = 0.

Appear to exist in AdS space-times.

Examples in Einstein + Maxwell + $\Lambda < 0$:

- ▶ D = 4, with a dilaton field: Goldstein et al, 0911.3586
- ▶ D = 5, with a magnetic field: D'Hoker and Kraus, 0911.4518

Of interest in AdS/CFT applications to condensed matter systems.

- 3

(B)

When embedding Einstein + Maxwell + $\Lambda < 0$ into string theory, obtain gauged supergravity. Study Nernst brane configurations in

N = 2 U(1) gauged supergravity in D = 4, 5.

D = 4: Einstein+Maxwell type theories with complex scalar fields and fluxes. Electric-magnetic duality.

Model encoded in:

- prepotential F(Y), complex scalar fields Y^{I} , $F_{I} = \partial F / \partial Y^{I}$
- superpotential $W(Y) = h_I Y^I h^I F_I$, dyonic fluxes (h_I, h^I)
- dyonic charges (Q_l, P^l) $l = 0, \dots, n$, $U(1)^{n+1}$.

Static brane configurations

Interested in static black branes, i.e. translationally invariant horizons. Ansatz:

$$ds^2 = -e^{2U} dt^2 + e^{-2U} \left(dr^2 + e^{2\psi} (dx^2 + dy^2) \right)$$

$$U = U(r)$$
 , $\psi = \psi(r)$, $Y' = Y'(r)$

Need to determine these profiles.

Extremal black branes: T = 0

- Reduced Lagrangian = Lagrangian |_{ansatz}
- Reduced Lagrangian = \sum squares of first-order flow equations
- Solutions to these first-order flow equations = extremal

Supplement with Hamiltonian constraint: Q_I h^I - P^I h_I = 0
 Dall'Agata + Gnecchi, arXiv:1012.375

Flow equations

First-order flow equations for the scalars $Y^{I}(r)$: $F_{I} = \partial F(Y) / \partial Y^{I}$

$$\begin{pmatrix} (\mathbf{Y}^{I} - \bar{\mathbf{Y}}^{I})^{\prime} \\ (F_{I} - \bar{F}_{I})^{\prime} \end{pmatrix} = -2i e^{-\psi} \operatorname{Im} \begin{pmatrix} e^{i\gamma} N^{IJ} \hat{Q}_{J} \\ e^{i\gamma} \bar{F}_{IJ} N^{JK} \hat{Q}_{K} \end{pmatrix}$$
$$+2i e^{\psi - 2U} \operatorname{Re} \begin{pmatrix} e^{i\gamma} N^{IJ} \hat{h}_{J} \\ e^{i\gamma} \bar{F}_{IJ} N^{JK} \hat{h}_{K} \end{pmatrix}$$

where

$$\hat{Q}_{l} = Q_{l} - F_{lJ} P^{J}$$
, $\hat{h}_{l} = h_{l} - F_{lJ} h^{J}$, $N_{lJ} = -i(F_{lJ} - c.c.)$

- Reminiscent of attractor equations of ungauged supergravity $(h_l = h^l = 0)$, but much more complicated to solve.
- Consistent with analysis for supersymmetric backgrounds Dall'Agata + Gnecchi, arXiv:1012.375

Gabriel Lopes Cardoso (IST)

Supersymmetric solutions

Find:

- can construct $AdS_2 \times R^2$ backgrounds ((Y')' = 0);
- exact solutions in model $F = -iY^0Y^1$ (dilaton-gravity model)
 - C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis,
 - R. Meyer, arXiv:1005.4690
- model $F = -(Y^1)^3/Y^0$:

interpolating solution between AdS_4 and $AdS_2 \times R^2$,

• STU-model $F = -Y^1 Y^2 Y^3 / Y^0$:

Nernst brane solutions (T = 0, S = 0). Not a small black hole. Electric ($Q_0; h_1, h_2, h_3$) $\longrightarrow Q_l h^l - P^l h_l = 0$ satisfied. Attractor.

Nernst brane solutions

Killing horizon at r = 0. Near horizon solution:

• infinitely long throat of unusual type (not $AdS_2 \times R^2$):

$$ds^{2} = -r^{5/2} dt^{2} + r^{-5/2} dr^{2} + r^{1/2} (dx^{2} + dy^{2})$$

conformal to Lifshitz metric with z = 3

$$ds^{2} = \tilde{r}^{-1} \left(-\tilde{r}^{2z} dt^{2} + \tilde{r}^{2} \left(dx^{2} + dy^{2} \right) + \tilde{r}^{-2} d\tilde{r}^{2} \right)$$

Vanishing area density.

Infinitely long throat + attractor mechanism: black.
 Vanishing entropy density.

Solution interpolates between conformally flat metric at $r = \infty$ and unusual throat (r = 0). Curvature invariants well-behaved.

Gabriel Lopes Cardoso (IST)

Behaviour of the physical scalar fields S, T, U:

$$S = Y^1/Y^0$$
 $T = Y^2/Y^0$, $U = Y^3/Y^0$

They blow up both at the horizon and asymptotically.

Embedding into type IIA string theory: S, T, U are Kähler moduli of internal space.

Blow up — solution decompactifies

 \longrightarrow good solution in D = 10 dimensions.

A B F A B F

- Explore the space of Nernst solutions in D = 4.
- Static black branes in D = 5:
 - electric charges Q_A only: no Nernst solutions
 - constant magnetic field in *z*-direction, say: $F = B dx \wedge dy$
 - electric charges + constant magnetic field

Thanks!

A D b 4 A b